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Abstract
The evolution of quantum entanglement of a pair of non-interacting qubits is
studied for the case where one of them is non-dissipatively but dephasingly
coupled to the environment. The reduced non-Markovian dynamics of the
qubits is exact for an arbitrary strength of coupling to the environment and
the arbitrary frequency spectrum of environment fluctuations. While for
the subohmic and ohmic environments the entanglement diminishes, for the
superohmic zero-temperature environment it survives for a long time.

PACS numbers: 03.65.Yz, 03.67.Mn, 03.67.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Is it realizable to maintain the quantum entanglement of a bipartite system in a fluctuating
environment as long as necessary? In ideal closed systems, the initial entanglement is preserved
forever. This is not the case for open systems. Usually, interaction with the environment leads
to the decay of entanglement. However, as will be shown in this communication, there are
systems for which one can positively answer the above question.

A variety of aspects of entanglement in open quantum systems have attracted considerable
attention due to its significance for the fundamentals and applications of quantum information
processing [1]. There are several proposals how to overcome the problem of decoherence
[2] by limiting quantum evolution to the decoherence free subspaces in order to maintain
unitarity resulting in effectively noiseless dynamics. The way how a system interacts with
its surrounding has a crucial impact on the entanglement of its components. The role of
the environment can be either constructive [3, 4] or destructive, resulting in noise-induced
entanglement decay and death [5] or, according to [6], the ‘decoherence of entanglement’. In
this context, persistent entanglement has been predicted in [7] and observed in quantum optical
systems [8]. The dynamical theory of entanglement is developed under various and often quite
abstract [9] assumptions. For an open system, the choice of a model of its reduced dynamics
is crucial. One of the most ‘popular’ guidelines for that choice is the complete positivity
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provided by the Kossakowski–Lindblad form of the applied master equations [10]. The
approach to entanglement dynamics is particularly convenient in the widely used Markovian
approximation, either formal [4] or rigorously derived via Davies weak coupling theory
[11]. Unfortunately, the results obtained in the weak coupling Markovian regime cannot be
extrapolated to the low temperature regime. As a result, the applicability of the weak-coupling
approximation for solid-state devices, often operating at deep cold, is problematic.

The key problem concerns the entanglement dynamics in the presence of a real
environment derived consistently from the microscopic first principles. The dissipation and/or
pure dephasing caused by such an environment is, in general, neither Markovian nor weak.
Here we study such a system and show that entanglement can live for a long time. Upon
the results of numerical calculation we formulate a conjecture: entanglement is persistent for
systems dephasingly coupled to a superohmic bath at vanishing temperature. Even if finite,
the lifetime of quantum entanglement is certainly much longer than the entanglement lifetime
of the system coupled to the corresponding Markovian environment of the same strength. It is
also shown that this effect is independent of a particular form of the initially entangled state.
What really matters is the degree of initial entanglement.

2. Model

We study an open system consisting of two qubits, S1 and S2 (two-level systems, spin-1/2
particles, etc). We consider the case where only one of the qubits, say S2, is coupled to the
fluctuating environment. However, there is no exchange energy with the environment (no
energy dissipation). It is pure dephasing which is an irreversible process of information loss
[12]. The qubits do not interact with each other. The only connection between the qubits is
information, i.e. the initial bipartite state. Different aspects of a similar system are discussed
in [5]. We assume that the Hamiltonian of the system takes the form

H = Sz
1 + Sz

2 +
∞∑

k=1

gk

(
a
†
k + ak

)
Sz

2 +
∞∑

k=1

ωka
†
kak, (1)

where the qubits are represented by the spin-1/2 operators Sz
1 and Sz

2, the environment is
modeled by harmonic oscillators, ak and a+

k are the annihilation and creation Bose operators,
gk is the strength of coupling to the kth mode of the environment. Such a model may serve as
a component of a simple quantum register [12].

The reduced dynamics of qubits can be determined exactly for arbitrary model parameters
[13] provided the initial state of the total system �(0) can be factorized into the two-qubits state
ρ(0) and the state of the harmonic oscillators environment ρenv, namely �(0) = ρ(0) ⊗ ρenv.

The simplicity of the model allows for an exact, rigorous, treatment of entanglement dynamics
beyond weak coupling and at vanishing temperature.

We assume that the environment is in an equilibrium Gibbs state ρenv of temperature T
and ρ(0) is an arbitrary density matrix for the bipartite system. As the qubits do not interact
with each other, their reduced (with respect to the environment [10, 14]) dynamics is governed
by the following equation:

ρ̇(t) = [L1(t) + L2(t)]ρ(t). (2)

The dynamics of the subsystem S1 is unitary,

L1(t)(·) = −i
[
Sz

1, ·
]
. (3)

The exact reduced dynamics of the open subsystem S2 is governed by the generator [13]

L2(t)(·) = −i
[
Sz

2, ·
] − K(t)

[
Sz

2,
[
Sz

2, ·
]]

. (4)



Fast Track Communication F881

This generator is of the Kossakowski–Lindblad form and hence complete positivity is preserved
[10]. The dephasing function K(t) reads [13]

K(t) =
∫ ∞

0
dω

J(ω)

ω
coth(βω/2) sin(ωt), (5)

where the frequency spectrum of environment fluctuations is determined by the spectral
function J (ω) = ∑

k g2
k δ(ω −ωk). In the thermodynamic limit, it is assumed to take the form

[14, 15]

J (ω) = λω1+µ exp(−ω/ωc), µ > −1 (6)

with the cut-off ωc determining the largest energy scale of the environment (it removes
possible problems at high frequencies) and λ corresponds to the coupling constant of the
qubit and environment. The spectral exponent µ characterizes low frequency properties of the
environment and defines its various types. According to the classification proposed in [15],
the environment is called subohmic for µ ∈ (−1, 0), ohmic for µ = 0 and superohmic for
µ ∈ (0,∞). This classification shall be reflected in the dynamical properties of entanglement.

3. Entanglement dynamics

The state of an open system is, in general, mixed. To quantify its entanglement, several
measures have been proposed [16, 17]. One of the most effective operational measures is the
negativity N(ρ) = max

(
0,−∑

i λi

)
[17], where λi are negative eigenvalues of the partially

transposed density matrix of the two qubits [18]. For an entangled mixed state, the negativity is
positive whereas it vanishes for unentangled states. Moreover, it is an entanglement monotone
and can be used to quantify the degree of entanglement.

3.1. T = 0

First, we analyze the limiting case T = 0. In this limit, the quantum mechanical properties are
the most transparent because the ‘classical’ sources of dissipation, decoherence and dephasing,
are frozen. The zero-temperature fluctuations are unavoidable due to vacuum fluctuations of
the environment. It results in a non-unitary evolution with the dephasing function

K(t) = λ
�(1 + µ)ω

1+µ
c(

1 + ω2
c t

2
)(1+µ)/2

sin[(1 + µ) arctan(ωct)]. (7)

This function decays algebraically in the case of the ohmic environment, namely Kohm(t) =
λ
(
ω2

c t
)/(

1 + ω2
c t

2
)
. Let us remind ourselves that for the model of Markovian dynamics

the dephasing function does not depend on time, Kmarkov(t) = const. [10]. However, the
Markovian approximation is justified only in the regimes where the energy scale of the
coupling to the environment is significantly smaller than any other energy scale in the system
[10, 14]. In this sense the Markovian approximation of the real reservoir at T = 0 suffers
serious inconsistence and can be regarded only as a formal ‘toy’. The real dissipation and the
Markovian toy are essentially different. In particular, limt→∞ K(t) = 0, which seems to be
crucial for various effects reported below.

The characteristic feature of the time dependence of the function K(t) is its non-
monotonicity (see figure 1). There is a characteristic time tc which separates two regimes: for
short time, K(t) increases till tc and next it monotonically decreases. In the case of subohmic
fluctuations a relatively moderate value at tc is accompanied by a slow decay of K(t) for t > tc.
On the other hand, in the superohmic case, the dephasing function has a sharp peak at tc but



F882 Fast Track Communication

µ=− 0.5

µ= 0

µ=−0.5

µ= 0

µ= 0.5
µ= 0.5

λ) λ)
 0

 4

 8

 16

 0  0.01  0.02  0.03  0.04  0.05

 0

 0  2000  4000

t

t
ln

(K
/

ln
(K

/

Figure 1. Short and long (inset) time evolution of the dephasing function K(t)/λ for the subohmic,
ohmic and superohmic zero-temperature environments. The cut-off frequency ωc = 103 has been
assumed.

it rapidly vanishes for longer times. Both the sharp peak and a slow decay of K(t) destroy
the entanglement. However, as will be shown below, there is an ‘optimal environment’ with a
small peak and a rapid decay, when entanglement may survive for a long time.

In the following we study the entanglement decay of the system prepared initially in the
maximally entangled state,

ρ(0) = 1
2 (|01〉 + |10〉)(〈01| + 〈10|). (8)

This choice is not unique. The results reported below are valid for almost all maximally
entangled states. This conjecture has been verified numerically by choosing randomly
generated maximally entangled initial states according to the algorithm elaborated in [9].
The results presented in figure 2 exhibit two qualitatively different types of behavior of
entanglement dynamics. In the case of the subohmic environment, the decay to zero of
entanglement is nearly exponential. For the ohmic environment, the decay is much slower.
Finally, for the superohmic environment, the entanglement is long-lived, i.e. it is non-zero and
tends to a constant value as time tends to infinity. However, from a practical standpoint, it is
sufficient that the lifetime of entanglement is much longer than the maximal time scale in the
system, here related to the first two terms on the rhs of equation (1), where the energy of the
spin h̄ω0 = 1. What follows from figure 2 is the existence of the optimal or ‘best’ environment
for which the measure of entanglement is non-zero for long times. From our detailed analysis
it follows that it corresponds to a value of the spectral exponent µ ≈ 0.05. Moreover, for other
values of the exponent, the entanglement is still preserved in the long-time limit. Why is the
superohmic environment better than the subohmic one? The reason is the power-law of the
low frequency property of environment fluctuations, J (ω) ∝ ω1+µ for small ω. Because J (ω)

falls off faster at low frequency in the superohmic case than in the subohmic one, the dephasing
time is longer (or coherence properties are better) in systems with slower dynamics, i.e., in
the superohmic environment. Moreover, as follows from [13] for a corresponding one-qubit
system, only in the case of the superohmic environment, the time-independent stationary state
limt→∞ ρ(t) does not exist and the mean values of the transverse components of the spin
operator relax to non-zero values.

The rate of convergence of negativity into its asymptotic value is natural evidence of
entanglement survival. The other natural evidence for the system approaching its steady state
is the saturation of quantum entropy S(ρ) = −Tr(ρ ln(ρ)). A plot of eight snapshots of
both negativity and entropy versus the spectral exponent µ is presented in figure 3. The
overlapping curves indicate the regime of fast convergence which confirms the previous
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Figure 2. Dependence of the negativity N on time t and the spectral exponent µ obtained for
T = 0, λ = 0.01 and ωc = 103. The left upper panel shows results for ohmic and subohmic
environments with µ = 0,−0.1, . . . , −0.7. Here, the Markovian case is depicted as well. The
right upper panel shows results for superohmic environments with µ = 0.05, 0.1, . . . , 0.4. In this
case, the negativity tends to a non–zero asymptotic value, i.e., the entanglement survives despite
contact with the environment.
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Figure 3. Snapshots of negativity (upper panel) and entropy (lower panel) for t = 500, . . . , 4000
and various magnitudes of the coupling strength (T = 0 and ωc = 103).
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Figure 4. Time evolution of negativity (upper panel) and entropy (lower panel) at various
temperatures of the superohmic bath. µ = 0.2, λ = 0.1 and ωc = 103 have been assumed.

conclusions concerning the lifetime of the entanglement. Comparison of the results with those
for the formal Markov environment shows that the Markovian approximation used beyond
weak coupling strongly overestimates the entanglement decay.

3.2. Finite temperature and noisy initial state

Now, let us examine the case of non-zero temperature, T 	= 0. The intuitively natural
expectation that the entanglement does not like to be warmed up is confirmed. The effect
of temperature is presented in figure 4. If the temperature is non-zero, there is certainly
no persistent entanglement. Fortunately, it seems that the entanglement is still long-lived
for T > 0, i.e. its decay is slow. In particular, it is much slower than for the Markovian
dynamics. Further warming up ‘synchronizes’ the system to the Markovian one: the weak
coupling approximation starts to be applicable. The present analysis of the system at non-zero
temperature suffers an inconsistence: the initial state is not affected by temperature. It is, in
principle, possible to build a mixture of the state with the thermal radiation [19]. As a result
the initial state becomes mixed.

Finally, we consider the noisy initial state. The preparation of a maximally entangled
pure state is always a ‘gedanken’ idealization. The experimentally accessible states are always
mixed due to quantum or classical noise. At T = 0, thermal fluctuations are frozen. The
simplest model of noise is the so-called depolarizing channel [20]. It transforms the initial
state into the mixed state ρ(0) → (p/d)1 + (1 − p)ρ(0), where p ∈ [0, 1] and the dimension
of the system is d = 4. Such a state is clearly mixed for p 	= 0. It is also known to remain
entangled for p < 2/3. The numerical results, not reported here, show that the ‘initial noise’
affects entanglement only quantitatively: the negativity is, in the first approximation, inversely
proportional to p and vanishes at p = 2/3.
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4. Summary

In conclusion, we showed that the stability of entanglement in a system of two non-interacting
qubits strongly depends on the low-frequency properties of environment fluctuations encoded
in its spectral function J (ω). As a central result, it is demonstrated that for the weakly
superohmic environment one may expect long-living entanglement. Our study is limited
neither to Markovian nor weak coupling regimes. In our opinion, the present analysis allows
for the conjecture that there are composite systems entangled forever even if coupled to a
thermal bath. The results can be verified in experiments carried on, e.g., Josephson [21] and
normal metal [22] flux qubits coupled to the magnetic environment in the limit of vanishing
tunneling. Since one of the main sources of decoherence in such systems at low temperature
is coupling to SQUID devices, it allows for an effective engineering [23] by changing the
spectral function of the environment. Our findings can serve as a guideline for the optimal
choice of parameters for entanglement macrobiosis. For small tunneling, the present results
are a good base for the perturbative treatment of the corresponding dynamical semigroup [24]
performed with respect to the tunneling term.
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